

April 2021

Andrew Mowbray • Graham Greenleaf • Philip Chung

AustLII’s DataLex
Developers’ Manual

AustLII’s DataLex – Developers’ Manual

Version: April 2021

Authors: Andrew Mowbray, Graham Greenleaf and Philip Chung

Andrew Mowbray is Professor of Law and Information Technology, University of
Technology Sydney and Co-Director, AustLII.

Graham Greenleaf AM is Professor of Law & Information Systems, UNSW Sydney and
Senior Researcher, AustLII.

Philip Chung is Associate Professor of Law, UNSW Sydney and Executive Director,
AustLII.

This is a work of joint authorship involving authors employed by UNSW and UTS.
The University of New South Wales and the University of Technology Sydney jointly
own the copyright subsisting in the work, together with other joint authors or their
successors in title. First published in Sydney, Australia 2021.

Australasian Legal Information Institute (AustLII)
Level 14, 61 Broadway
Ultimo NSW 2007 Australia

Tel: +61 2 9514 4921
Fax: +61 2 9514 4908
Email: feedback@austlii.edu.au
Web: http://www.austlii.edu.au/

AustLII is a joint facility of UTS and UNSW Faculties of Law.

Contents

3

Contents

1 DataLex Intelligent Applications Development Environment 7
1.1 Components of AustLII’s DataLex Intelligent Applications Development

Environment .. 7
1.1.1 The DataLex coding language ... 8
1.1.2 The DataLex application development tools ... 8
1.1.3 The DataLex run-time interface .. 8

1.2 Conventions used in this Manual .. 9
1.3 Theoretical foundations of the DataLex approach ... 9
1.4 Creating a new application using the Development Tools 10
1.5 Creating a new application in the DataLex Community .. 11

2 Introduction to DataLex Coding ... 13
2.1 Introduction .. 13

2.1.1 Levels of complexity .. 13
2.1.2 Main features ... 13
2.1.3 The DataLex User Interface Manual .. 14
2.1.4 Where is the developer’s interface? .. 14

2.2 Declarative Coding .. 14
2.2.1 Rules .. 14
2.2.2 Form of a simple rule ... 15

2.3 Content of rules - keywords and descriptors .. 15
2.3.1 Keywords ... 15
2.3.2 Descriptors .. 16

2.4 Example of a rule – FOI Act s11 ... 16
2.4.1 The section .. 16
2.4.2 The corresponding code .. 16

2.5 Running a DataLex application ... 17
2.5.1 Debugging .. 17
2.5.2 Check Fact Cross References .. 17
2.5.3 Check Fact Translations .. 18

2.6 Some style guidelines for DataLex applications ... 18
2.6.1 Simplicity ... 18
2.6.2 Isomorphism ... 18
2.6.3 Small rules ... 18
2.6.4 Fact Names .. 19
2.6.5 Rule Types ... 19
2.6.6 Declarative Representation ... 19
2.6.7 Comments ... 19

3 Descriptors, Keywords and Expressions .. 20
3.1 Facts .. 20

3.1.1 Consistent naming of facts .. 20
3.1.2 Boolean (true/false) facts and their names .. 20
3.1.3 Non-boolean facts - types ... 21

Contents

4

3.1.4 Automatic type recognition of non-boolean facts 21
3.1.5 Formal fact type declarations ... 21
3.1.6 Range limitation of fact values [advanced] ... 22
3.1.7 Naming non-boolean facts .. 22

3.2 Constants .. 23
3.3 Generating questions and explanations ... 23

3.3.1 Automatic prompts and explanations .. 23
3.3.2 Different forms of the same fact ... 24
3.3.3 Correcting grammatical errors .. 24
3.3.4 Adding fact translations [advanced] ... 25

3.4 Named subjects - names of people and things .. 25
3.4.1 Named subject declarations ... 26
3.4.2 The automatic fact declarations [advanced] .. 26

3.5 Expressions - the use of operators ... 27
3.5.1 (Pre) Unary Operators ... 27
3.5.2 (Post) Unary Operators ... 27
3.5.3 Binary Operators ... 28
3.5.4 Examples of the use of expressions ... 28

4 Rules and Statements ... 29
4.1 Order of evaluation of rules .. 29
4.2 Goal rules .. 29

4.2.1 Multiple GOALS ... 29
4.3 Order of evaluation of rules .. 30

4.3.1 Calling rules [advanced] .. 30
4.3.2 Rule names .. 30
4.3.3 The ORDER declaration [advanced] .. 30

4.4 Types of rules .. 31
4.4.1 Default rule type ... 31
4.4.2 Declaring other types of rules ... 31
4.4.3 Syntax for rule types ... 31
4.4.4 Backward rules ... 31
4.4.5 Forward rules .. 31
4.4.6 Daemons ... 32
4.4.7 Procedures .. 32
4.4.8 Documents .. 32

4.5 Generic rules [advanced] .. 32
4.6 Statements .. 33

4.6.1 IF-THEN-ELSE statements ... 34
4.6.2 Inclusive definitions .. 34
4.6.3 Assignments and Assertions ... 34
4.6.4 Assertions ... 34
4.6.5 Assignments .. 35
4.6.6 Syntax for assignments and assertions .. 35
4.6.7 DETERMINE Statement ... 36
4.6.8 CALL Statement [advanced] .. 36
4.6.9 WHILE-DO and REPEAT-UNTIL Statements ... 37
4.6.10 Use of BEGIN - END pairs ... 37

Contents

5

5 DataLex Integration with AustLII ... 38
5.1 Overview - Integration with their sources .. 38
5.2 Automatic links to AustLII legislation ... 38
5.3 Automatic links to case law .. 39
5.4 Explicit links in a rule-base (the LINK ... TO ... keywords) 39

5.4.1 Example ... 40
5.5 Stored searches from DataLex rule-bases ... 40

5.5.1 Example ... 40
5.6 ‘Co-operative inferencing’ ... 40

5.6.1 The INCLUDE keyword .. 40
5.6.2 Example ... 41
5.6.3 Specifying a goal .. 41

6 Document Assembly using DataLex ... 42
6.1 DOCUMENT rules .. 42

6.1.1 DOCUMENT rules as goals ... 42
6.1.2 Example - a clause of a will ... 42

6.2 Text generation statement types - PARAGRAPH and TEXT 43
6.2.1 The text argument and embedded facts ... 43
6.2.2 Differences between PARAGRAPH and TEXT ... 43

6.3 ‘Personalising’ documents - embedded facts .. 44
6.3.1 Named Subjects in documents ... 44

6.4 Alternative clauses in a document .. 45
6.5 Generating successive paragraphs of a document - use of CALL statements 45

6.5.1 Document generation is essentially procedural 46
6.6 Numbering paragraphs ... 46

6.6.1 The NUMBERED keyword .. 46
6.6.2 The LEVEL keyword ... 47

6.7 Integration of inferencing and document generation ... 47
6.8 Use of other DataLex features with document assembly 47
6.9 Example - a will generator .. 48

7 Case-based (Example-based) Reasoning using DataLex 50
7.1 Example-based reasoning – overview .. 50
7.2 Interaction between examples and rules ... 50
7.3 Knowledge representation – EXAMPLEs .. 51

7.3.1 Automatic facts and example names .. 51
7.3.2 Formal syntax for an EXAMPLE ... 51

7.4 An example of a case representation by EXAMPLEs .. 52
7.5 Reports generated by DataLex EXAMPLE reasoning .. 52
7.6 Principles behind the case-based inferencing component 52

7.6.1 PANNDA ... 53
7.6.2 PANNDA’s DataLex implementation ... 53

7.7 Steps in developing an EXAMPLE set .. 54
7.7.1 RULEs, EXAMPLEs and DOCUMENTS interact .. 54
7.7.2 Use of hypertext links with EXAMPLE rules .. 54

Contents

6

7.7.3 Example – the ‘finder’s cases’ .. 56

8 DataLex User Interface Manual ... 59
8.1 Relationship to the previous chapters .. 59
8.2 Starting a session .. 59
8.3 Choice of goals .. 60
8.4 Answering questions .. 60

8.4.1 Buttons and numbers .. 61
8.4.2 Why? – Providing reasons for questions ... 61
8.4.3 Hypothetical answers (‘What if?’) ... 61
8.4.4 Uncertain answers .. 61

8.5 Showing facts (What?) .. 61
8.6 Forgetting facts (Forget) ... 61

8.6.1 Forgetting all facts .. 62
8.7 Obtaining explanations for conclusions (How?) ... 62
8.8 Reports .. 62

8.8.1 Documents generated ... 63
8.9 Links to sources .. 63

8.9.1 Returning to the dialogue .. 63
8.9.2 Related materials .. 63

8.10 Viewing sessions in verbose mode ... 64
8.10.1 Viewing the rule being evaluated .. 64
8.10.2 Viewing the session in Verbose mode .. 64
8.10.3 Saving the transcript of a session ... 64

DataLex Intelligent Applications Development Environment

7

1 DataLex Intelligent Applications Development
Environment

1.1 Components of AustLII’s DataLex Intelligent Applications
Development Environment

AustLII’s DataLex is a development environment for building intelligent web-
based applications with automated integration of AustLII’s legal content. The
system is particularly suited to the development of systems that are based on
legislation or other rules (Rules as Code) but can be used to construct a range of
applications incorporating sophisticated legal reasoning supported by a
comprehensive set of legal materials.

DataLex is available via a dedicated development environment as well as being
part of the AustLII Communities facility which allows for collaborative and
distributed applications development.

The system has the following principal components:

This Manual describes the development and use of DataLex as at April 2021.

DataLex Development
Environmentyscript interpreter

Application Other interfaces

AustLII
Communities

AustLII Legal Databases
(cases, legislation,

journals, law reform,
treaties)

AustLII Search

LawCite

DataLex Intelligent Applications Development Environment

8

1.1.1 The DataLex coding language

DataLex applications are written using a coding language called yscript
(pronounced “why-script”). yscript is a computer language developed by Andrew
Mowbray which allows you to quickly build sophisticated interactive systems that
can model legislation, rules and case law. The language supports a declarative
rule-based paradigm as well as imperative coding. It also supports analogous
reasoning and document assembly. Applications written in yscript can be
incorporated as part of systems in various environments using a flexible
applications programming interface (API) which can interface with most modern
programming languages.

A complete introduction and description of the yscript language is
available in the document: Coding in yscript – a Description of the yscript
language (the “yscript Manual”). This document also includes a very easy
to read short tutorial introduction. The coverage of yscript provided
below, is a summary only and does not include all features. Experienced
developers may just wish to read the yscript Manual. Where there are any
differences between this document and Coding in yscript, the latter is
correct.

1.1.2 The DataLex application development tools

DataLex applications can be developed via a freestanding web-based integrated
development environment1 or, where collaboration is required, within the
DataLex section of the AustLII Communities environment.2

The development environment provides a number of tools for checking and
correcting code. Automated links between application texts and the source texts
on AustLII and other LIIs also make it easier to check rules etc against the
sources on which they are based, during development.

1.1.3 The DataLex run-time interface

The default DataLex run-time interface provides an easy-to-use environment in
which end-users conduct a question-and-answer dialogue with the application in
order to provide information (‘facts’) to it in order for the system to draw
conclusions, and to conclude a user session by producing a report (and in some

1 DataLex Development Tools <http://www.datalex.org/dev/tools/>

2 DataLex section of the AustLII Communities <http://austlii.community/wiki/DataLex/>

http://www.datalex.org/dev/tools/
http://austlii.community/wiki/DataLex/

DataLex Intelligent Applications Development Environment

9

cases a document). The interface allows users to ask Why questions are being
asked and How conclusions have been reaching, as well as to Forget facts
previously provided, and to test hypothetical facts through a What-if facility. The
user interface also uses AustLII’s automated markup and legal search facilities
to provide automated links from dialogues, conclusions and reports to the
relevant legal sources on AustLII or on other LIIs. This integration between the
application code and the legal sources located on LIIs is one of the principal
distinctive features of the DataLex approach.

The run-time interface is intended to be used during application development
and to demonstrate application functionality. Other interfaces for application
deployment can be developed using DataLex or via the yscript API.

The User Manual for the DataLex user interface is in Chapter 8 of this Manual. The
DataLex interface has been developed by Philip Chung, Andrew Mowbray and
AustLII consultants.

1.2 Conventions used in this Manual
The following conventions are used in this Manual to explain commands or file
names:

string Words or symbols in bold indicate the actual words or
symbols used;

string Words or symbols in italics indicate that their content is
variable;

| A vertical bar is used to divide a range of options - don't type
it.

{ string } Curly brackets indicate that contents may be repeated zero or
more times. Again, don’t type it.

1.3 Theoretical foundations of the DataLex approach
There are a number of articles explaining and justifying the approach taken by
the DataLex project. The main articles, and bibliography, are as follows:

• A Mowbray, P Chung and G Greenleaf, ‘Utilising AI in the Legal Assistance
Sector – Testing a Role for Legal Information Institutes’ (April 29, 2019),
presented at LegalAIIA ’19, June 17, 2019, Montréal, Québec, Canada
<https://ssrn.com/abstract=3379441>

• G Greenleaf, A Mowbray, and P Chung, ‘Building Sustainable Free Legal
Advisory Systems: Experiences from the History of AI & Law’ (2018) 34(1)

https://ssrn.com/abstract=3379441

DataLex Intelligent Applications Development Environment

10

Computer Law & Security Review 324
<https://ssrn.com/abstract=3021452>

• G Greenleaf, A Mowbray, and P.Chung ‘The Datalex Project: History and
Bibliography’ (January 3, 2018). [2018] UNSWLRS 4
<https://ssrn.com/abstract=3095897>

1.4 Creating a new application using the Development Tools
Go to <http://www.datalex.org/dev/tools/>. No login is necessary. This page
enables creation and testing of applications using the DataLex software. It does
not allow apps to be saved and you will need to keep a separate copy on your
own computer.

https://ssrn.com/abstract=3021452
https://ssrn.com/abstract=3095897
http://www.datalex.org/dev/tools/

DataLex Intelligent Applications Development Environment

11

There are two ways to start writing an app:

(i) Simply start writing in the ‘Edit DataLex application’ editing screen,
following the instructions about yscript coding in this Manual.

(ii) If you know what section of an Australian Act you would like to start with, go
to the ‘Import legislative section (available on AustLII)’ and enter the Act
name, jurisdiction and section. You might also want to click on the ‘ylegis
Preprocessor’ button which produces a ‘rough cut’ of some yscript rules that
reflect the section’s structure. You can then start editing as in (i) above.

Select the ‘Run Consultation’ button to test your code, when ready. Please note:

• After running your app (successfully or unsuccessfully) you can use your
browser to come back to the KB Tools page to make further edits.

• If your app does not run as intended, use the ‘Check Fact Cross
References’ and ‘Check Fact Translations’ buttons to run diagnostics (see
2.5 below) to identify problems. Edit and run again.

• If you have spent any significant time developing your code, you might
want to save a copy in a word processor or other file, in case the browser
malfunctions, or if you want to reuse the code after quitting the browser.

Refinements:

• To add another section of an Act from AustLII to an existing application,
use the ‘Import and Append’ button after specifying the additional
section.

• To over-write and erase an existing application with a new section from
AustLII, use the ‘Import and Replace’ button.

• To clear an existing application and start again, use ‘Clear Application’.

1.5 Creating a new application in the DataLex Community
The DataLex Community (part of the AustLII Communities) is a collaborative
closed wiki-like platform used in the DataLex system for creating and editing
applications or rule-bases.

Log into the DataLex Community site <http://austlii.community/wiki/DataLex/>
by clicking on the ‘Log in’ button on the top right hand corner.

http://www.austlii.edu.au/
http://austlii.community/wiki/DataLex/

DataLex Intelligent Applications Development Environment

12

Once the login process is verified, an extra row of buttons for editing and creating
new rule-bases will appear on the page.

Click on ‘Edit’ to edit existing rule-bases.

To start a new rule-base (or topic), click on the ‘New’ button. Do so from the
DataLex page, or it will be a sub-page from wherever you start. The following
window will appear:

Enter the ‘Title’ of the rule-base to be constructed. The example here is
‘PrivacyKB’ for a privacy law application. (For easy identifiability, it is useful to
give knowledge-bases the suffix ‘KB’.) In the ‘Template’ section, select
‘DataLexKBTemplate’ (not ‘Default’). Then, click on ‘Submit’.

In the editing screen for the rule-base (with heading ‘Title of knowledge-base’),
start editing your rule-base by deleting ‘ADD RULES HERE’. One way to start a
rule-base is to paste in a legislative section, and start editing it to create rules.

To find your rule-base after you have logged back in, search for the first few
letters of the name of your rule-base (eg search for ‘FOI’ to find
FOIDocumentOfAnAgencyKB).

Introduction to DataLex Coding

13

2 Introduction to DataLex Coding

2.1 Introduction
DataLex uses yscript code to build applications. yscript is a language for
representing propositional and other types of knowledge and data in a quasi-
natural language format3.

2.1.1 Levels of complexity

yscript is very simple to use to create small interactive applications, particularly
those that are based around legislation. This is because all you have to do, to get
a small system up and running, is to paraphrase a section or two of an Act into a
somewhat strict logical form, using logical connectors such as IF, THEN, AND and
OR. The result is executable code that is expressed in an ‘English like’ knowledge
representation language. The yscript interpreter then does the rest, running your
knowledge base to generate a dialogue with the user, asking questions and giving
answers. You do not need to write any of the questions or answers – these are
generated automatically from your code.

However, while yscript can be used easily by relying only on a small number of its
features, the language has a very powerful and complex range of features which
can be used as you proceed to develop more sophisticated applications.

You may wish at this point to refer to Chapter 2 of Coding with yscript – A
description of the yscript language which provides a shorty and easy to follow
introduction to the basics of yscript coding.

2.1.2 Main features

The main features of yscript are:

§ a ‘quasi-natural-language’ or English-like syntax, which encourages
isomorphism (similarity between the structure of a rule-base and
source legal documents), transparency (purpose of rules is relatively
obvious) and rapid prototyping (easy to get small systems running);

§ code of any degree of complexity may be written, using propositional
logic;

3 DataLex does not implement all of the yscript language. In particular, explanations and
multiple-choice answers are not currently supported.

Introduction to DataLex Coding

14

§ code is divided into rules which are automatically invoked to derive
conclusions;

§ conventional procedural code including mathematical calculations is
possible;

§ a form of reasoning by analogy, or example-based reasoning; and

§ a document generation facility.

2.1.3 The DataLex User Interface Manual

The DataLex User Manual, in Chapter 6, explains the interface to DataLex
applications when they are running, from a user perspective. It should be read
either before or in conjunction with this Chapter.

2.1.4 Where is the developer’s interface?

The basic development environment for DataLex applications can be found at:
<http://www.datalex.org/dev/tools/>. The developer’s interface for DataLex
applications within the AustLII Communities environment is at
<http://austlii.community/wiki/DataLex/>. This also includes documentation,
papers and examples.

2.2 Declarative Coding
A DataLex application is generally a set of declarations, so called because they
‘declare’ what a (real life) rule says rather than trying to specify a procedure for
applying it. This type of programming is therefore called ‘declarative’
programming, in contrast to ‘procedural’ (or imperative) programming, which is
of the form ‘first do this step; then do this step’.

2.2.1 Rules

The most important type of declarations are rules (so sometimes a piece of
yscript code is referred to as a rule-base). Rules contain statements that use and
determine the value of facts. When rules are executed, the system attempts to
find the value of required facts by using other rules or if necessary, by asking the
user.

It does this by going to a rule which has a fact as its conclusion and examining
each of the premises of that rule to determine whether the conclusion of the rule
is true. In evaluating the premises of a rule, the system uses any other rules

http://www.datalex.org/dev/tools/
http://austlii.community/wiki/DataLex/

Introduction to DataLex Coding

15

which have any of the premises as their conclusion. This process is then
repeated along each branch of reasoning until it reaches a premise for which
there is no rule to derive a conclusion. At this point, the DataLex interface
interrogates the user about the truth of the premise.

2.2.2 Form of a simple rule

In its simplest form, a rule contains four elements:

(i) the keyword ‘RULE’, indicating the start of a new rule;
(ii) the name of the rule (usually just the name of the Act and section that it

paraphrases); The name of a rule should differ from that of any other rule in
the rule-base;

(iii) the keyword ‘PROVIDES’, indicating the start of the body of the rule; and
(iv) the statement(s) which make up the content of the rule. One of the simplest

forms of a statement is ‘IF condition THEN conclusion’.

The simplest syntax for a rule is therefore as follows:

 RULE name PROVIDES statements

The example below shows a rule with one moderately complex set of
statements:

RULE Freedom of Information Act 1982 (Cth) s11 PROVIDES
a person has a legally enforceable right under s11 to obtain
access to a document ONLY IF
 s11(a) applies OR
 s11(b) applies

2.3 Content of rules - keywords and descriptors
yscript code consist of keywords and descriptors. Keywords are used to join
together, in a logical form, a number of descriptors, which are simply terms or
phrases used to describe some object, event etc.

2.3.1 Keywords

Keywords give code the logical structure. They are written in FULL UPPER CASE
so yscript can distinguish them from their equivalents in ordinary words (which
may occur in descriptors).

Some examples of important keywords, or sets of keywords are: ONLY IF; IF
THEN; IF ... THEN ELSE; IS; AND; OR; PLUS; MINUS; PERSON; THING.

Introduction to DataLex Coding

16

There is a list of keywords which may be used with DataLex at the end of this
Chapter.

yscript is very case-sensitive. It expects keywords to be in FULL UPPER CASE.

2.3.2 Descriptors

Descriptors may be any sequence of words or symbols but must not contain
keywords (although they can contain the lower case versions of them).
Descriptors are generally written in lower case, with normal capitalisation. See
Chapter 3 for details of how descriptors should be written in order to work best.

In the example below, some descriptors used are ‘a person has a legally
enforceable right under s11 to obtain access to a document’, ‘s11(a) applies’ and
‘the document is not an exempt document’. These are all facts.

There are a number of varieties of descriptors, of which the most important are (i)
constants, (ii) facts (iii) named subjects (a special type of fact) and (iv) rule
names. Each is discussed in detail in the following chapter.

First, however, a simple example of a rule, and how to make it run, is given.

2.4 Example of a rule – FOI Act s11

2.4.1 The section

The Freedom of Information Act 1982 (Cth) s11 reads:

11. Subject to this Act, every person has a legally enforceable right to obtain
access in accordance with this Act to –

(a) a document of an agency, other than an exempt document; or

(b) an official document of a Minister, other than an exempt document.

2.4.2 The corresponding code

This section can be represented as three rules. Note that in capturing what the
section says, we model not only its effect but also the structure and justification
for any outcomes that might follow from applying it:

RULE Freedom of Information Act 1982 (Cth) s11 PROVIDES
a person has a legally enforceable right under s11 to obtain access
to a document ONLY IF
 s11(a) applies OR
 s11(b) applies

Introduction to DataLex Coding

17

RULE Freedom of Information Act 1982 (Cth) s11(a) PROVIDES
s11(a) applies ONLY IF
 the document is a document of an agency AND
 the document is not an exempt document

RULE Freedom of Information Act 1982 (Cth) s11(b) PROVIDES
s11(b) applies ONLY IF
 the document is an official document of a Minister AND
 the document is not an exempt document

2.5 Running a DataLex application
Text, such as that above, is all that is needed for a valid piece of code. The code
can be executed as a DataLex session by selecting the ‘Run Consultation’ button.

If your code does not behave as intended, go back to the editing page, edit, and
run it again. The main purpose of the type/paste window on the manual start
page is to allow the developer to test minor changes to code without having to
create a new web page each time in order to do so.

2.5.1 Debugging

In addition to the ‘Run Consultation’ button, there are two additional buttons
which allow you to check for some types of errors in your code, either before you
try to run it, or after you so, and it does not perform quite as expected. They are
‘Check Fact Cross References’ and ‘Check Fact Translations’.

There is also another debugging tool that can be used while the application is
running, Verbose Mode (see 8.10).

2.5.2 Check Fact Cross References

Use of similarly named but not identically named facts is one of the main causes
of errors, particularly where rules which are supposed to invoke each other do
not do so. The ‘Check Fact Cross References’ button allows you to check for such
errors.

The ‘Check Fact Cross References’ button causes each fact to be printed (in
alphabetical order) showing the names of rules which set (*) and rules which use
(-) the fact (including named subjects).

Use of similar but not identical fact names is one of the main causes of errors in
DataLex. The ‘Check Fact Cross References’ button allows you to check for such
errors.

Introduction to DataLex Coding

18

2.5.3 Check Fact Translations

Use of the ‘Check Fact Translations’ button enables you to check that your facts
are expressed correctly.

For each fact in the code, in the order in which they occur, it shows: (i) prompts
(questions); (ii) a translation in positive form; and (iii) a translation in negative
form. For example, the interrogative, positive and negative translations of the
fact ‘s11(a) applies’ are as follows:

-Does s11(a) apply?
-S11(a) applies.
-S11(a) does not apply.

Use the ‘Check Fact Translations’ button to check that your facts are expressed
correctly.

2.6 Some style guidelines for DataLex applications
Although DataLex is designed to be fairly flexible, it is worth bearing in mind the
following guidelines for developing rule-bases:

2.6.1 Simplicity

Try to aim for simplicity wherever possible. Complicated kludges and
workarounds detract from the readability of the code and can have unexpected
repercussions, particularly when the code is later expanded or changed. Don't
use facilities simply because they are available.

2.6.2 Isomorphism

Where the code represents rules from a legal source document such as a piece of
legislation, try to directly translate the statutory rules into DataLex rules,
observing as far as possible the order and grouping of the legislative rules, and
adding as little interpretation as possible. Keep other rules, such as
interpretation or 'common sense' rules which do not derive directly from the
legislation, in a separate part of your rule-base.

2.6.3 Small rules

Avoid large and complicated rules. Small rules are easier to understand and will
assist with automatic explanations.

Introduction to DataLex Coding

19

2.6.4 Fact Names

Include the legal basis for facts in their descriptors, as in the layout is in "material
form" as defined in s.5. This will make for more meaningful explanations. Avoid
using unnecessarily long descriptors. These make for convoluted questions and
explanations. Do not use the translation and prompt options unnecessarily. Try
changing the fact name to get DataLex to handle it properly, first. Avoid use of
embedded facts.

2.6.5 Rule Types

Use only the default rule type unless you have a good reason for doing otherwise.
Forward chaining rules and daemons should generally only be used to alter the
operation of rules encompassing knowledge rather than to embody knowledge
themselves.

2.6.6 Declarative Representation

Do not represent knowledge procedurally using DETERMINE and CALL
statements except where unavoidable. Avoid being concerned about the actual
operation of knowledge-rich rules and instead concentrate on describing the item
of knowledge with which you are dealing.

2.6.7 Comments

Avoid relying on comments to understand your code. The code should largely be
transparent. However, you can use comments to indicate what legislative
provisions you have omitted.

Descriptors, Keywords and Expressions

20

3 Descriptors, Keywords and Expressions

yscript code consists of keywords and descriptors. Keywords are used to join
together, in a logical form, a number of descriptors, which are simply terms or
phrases used to describe some object, event etc. Descriptors may be any
sequence of words or symbols but must not contain keywords (although they can
contain the lower case versions of them). Descriptors are generally written in
lower case, with normal capitalisation. The most important types of descriptors,
discussed in this Chapter, are (i) constants, (ii) facts, (iii) named subjects (a
special type of fact) and (iv) rule names.

3.1 Facts
A fact is any descriptor (a sequence of words or symbols which does not contain
a keyword) which is not a constant (see below). The purpose of facts is to hold
values which are determined during the evaluation of the code.

3.1.1 Consistent naming of facts

Consistent naming of facts, including consistency in capitalisation and
punctuation, is vital.

Lack of consistency (including capitalisation and punctuation) is the principal
cause of applications running other than as expected. Use the ‘Check Fact Cross
References’ button to check for possible inconsistencies in naming of facts.

3.1.2 Boolean (true/false) facts and their names

The default fact type is boolean (that is, it is a proposition that can be true or
false). When naming boolean facts, you should choose a name starting with a
subject, then a verb (expressed in the positive or negative) and, optionally, an
object.

Descriptors, Keywords and Expressions

21

For example, each of the following is a boolean fact, correctly expressed:

Subject Verb Object
the claimant satisfies s23(1)
the circuit layout is in material form
section 9 applies
section 9 does not apply to bills of exchange

The purpose of the recommended subject/verb/object form is explained below in
relation to the generation of questions and explanations (see 3.3 Generating
questions and explanations).

3.1.3 Non-boolean facts - types

yscript recognises the following fact types:

Type Values Example
BOOLEAN true or false See above
INTEGER whole numbers only the number of applicants
REAL fractions accepted the number of degrees tolerance
STRING a string of text the alleged defamatory statement
GENDER male, female or unspecified the preferred gender of the claimant
DOLLAR dollars and cents the value of the estate
DATE a date the date of the intestate's death

Non-boolean facts are introduced in one of two ways: (i) automatically by use; or
(ii) formally by a declaration.

3.1.4 Automatic type recognition of non-boolean facts

If the first use of a fact requires that it is something other than boolean, that type
is automatically associated with it. From then on, you must use the fact
consistently or an error message will result. In other words, the language
interpreter is able to make an ‘intelligent guess’ about the type of non-boolean
fact that is intended, based on other aspects of the expression it is first found in.
For example, in the expression ‘IF the date of arrival IS GREATER THAN 1 May
1977’, the fact ‘the date of arrival’ will of type DATE, because another date (1
May 1977) appears in conjunction with a relational operator.

3.1.5 Formal fact type declarations

While non-boolean facts are generally identified automatically, sometimes it is
necessary to make an explicit declaration of the type of the fact.

The basic syntax for formal declarations is:

Descriptors, Keywords and Expressions

22

TYPE fact-name

optionally followed by a list of translations and valid ranges (discussed below).

For example, to declare facts to be of the types ‘DATE’ and ‘DOLLAR’:

DATE the date of the intestate's death
DOLLAR the value of the estate

Because of these declarations, or because of automatic recognition, during
execution DataLex would only accept responses from a user that were of the
specified types.

Fact declarations should appear outside of rules and procedures. Otherwise, they
can appear anywhere in a rule-base, provided they appear somewhere in the
code prior to where the fact is first used. It is often convenient to group them all
at the start.

3.1.6 Range limitation of fact values [advanced]

If there was a need to further limit the range of acceptable responses from the
user (eg to dates only within a specified period, or to amounts less than a certain
maximum), then a RANGE statement is available

The syntax is:

RANGE expression [TO expression]

This should appear immediately after a fact declaration. It may be used multiple
times if there are many valid ranges. Where the optional TO expression is used it
indicates that the value for the fact should be between the result of the first
expression and the result of the second expression. However, in this case the
expressions must produce numeric or date results.

Some examples of RANGE statements are:

STRING the name of the intelligence agency
 RANGE "ASIO"
 RANGE "ASIS"
 RANGE "DSD"

DOLLAR the value of the household chattels
 RANGE 0 TO the value of the estate

3.1.7 Naming non-boolean facts

You must choose a fact name which can be followed by an ‘is’ or an ‘are’ then a
value so that prompts and translations can be provided. For example, the non-

Descriptors, Keywords and Expressions

23

boolean fact declarations given above will correctly result in the following
prompts and (when answered) translations:

DATE the date of the intestate's death
What is the date of the intestate's death ?
The date of the intestate's death is 1st January 1991.

DOLLAR the value of the estate
What is the value of the estate ?
The value of the estate is $250,000.

3.2 Constants
Whereas facts have a value which is determined during the evaluation, a constant
has a fixed value. yscript recognises any of the following descriptors as
constants: an integer (eg 1000), a real number (eg 7.15), a dollar amount (eg
$950 or $950.00), the words ‘true’ and ‘false’ (boolean constant) and the words
‘male’ and ‘female’ (sex constant), a date (in any sensible format), and any
descriptor placed in double quotes (a string constant).

Constants are recognised automatically. If a descriptor is not any of these
categories of constant, it assumes that the descriptor is a fact.

Constants are used primarily in expressions which use binary operators (eg PLUS;
EQUALS; IS LESS THAN; IN) and in assignment statements (see below).

3.3 Generating questions and explanations
One of yscript’s main features is its capacity to automatically generate questions
(prompts) by re-parsing the fact name that it is attempting to find a value for, into
an interrogative form (ie by re-parsing the part of the rule it is at present
evaluating). Similarly, it can provide explanations by re-parsing rules that it has
previously evaluated, substituting the values that it has established for those
rules.

3.3.1 Automatic prompts and explanations

Provided that boolean fact names appear in the subject/verb/object form
explained above (see 3.1.2 Boolean (true/false) facts and their names), or non-
boolean fact names appear in the 'is' form explained above (see 3.1.3 Fact names
for non-boolean facts), yscript will normally be able to affect sensible
translations automatically, for use during problem sessions. For the above
examples, the following automatic prompts and translations would be generated:

 Does the claimant satisfy s23(1) ?
 The claimant satisfies s23(1).

Descriptors, Keywords and Expressions

24

 The claimant does not satisfy s23(1).

 Is the circuit layout in material form ?
 The circuit layout is in material form.
 The circuit layout is not in material form.

 Does section 9 apply ?
 Section 9 applies.
 Section 9 does not apply.

 What is the date of the intestate's death ?
 The date of the intestate's death is 1st January 1991.

Use the ‘Check Fact Translations’ button to check whether sensible prompts and
translations are being generated.

3.3.2 Different forms of the same fact

yscript re-parses all boolean fact names into a consistent positive form for
storage purposes, and so recognises different grammatical forms of the same
fact. For example, the following statements all refer to the same fact:

 the Act applies
 the Act does not apply
 the Act does apply
 the Act doesn’t apply

It therefore does not matter which form you use in a rule.

3.3.3 Correcting grammatical errors

yscript uses a light weight natural language parser to divide a proposition into a
subject, verb and object. Based on this, different grammatical forms of the same
fact can be generated. Sometimes, however, it will make errors.

Where an error occurs, the first thing to consider is to change the fact name to
something simpler or to make the presence of the verb more obvious. yscript will
generally prefer auxiliary verbs (such as “is”, “was”, “has”, “will”, “can”, “shall”
and so forth) over anything else. Inserting such a verb (to form a compound verb)
will often fix the problem.

If this doesn’t work, you can force a proposition to divide at a verb by preceding
this with a tilde (ie ~) character. For example:

the well-being of all children~matter

If you do this, you will need to consistently include the tilde character whenever
you refer to the fact.

Descriptors, Keywords and Expressions

25

3.3.4 Adding fact translations [advanced]

One of the main purposes of yscript’s automatic re-parsing of rules to produce
prompts and explanations is so that there is normally no need to maintain
separate bodies of text for each fact, with all the complications this implies for
development and maintenance.

However, if the automatic parsing is inadequate for some reason, it is possible to
‘override’ it and to declare what the prompt and translation should be for a
particular fact.

For example, the fact ‘the date of death of the intestate’ would normally generate
the prompt ‘What is the date of death of the intestate?’ and the translation would
be ‘The date of death of the intestate is’. This can be altered by adding
PROMPT and TRANSLATE statements after a fact type declaration for the fact.
For example:

DATE the date of death of the intestate
 PROMPT when did the intestate die
 TRANSLATE AS the intestate died on <>

The use of angle brackets (ie <>) without a fact name causes the value of the fact
being evaluated to be substituted.

Where a fact has more than one possible value, different translations for each
value may be provided. For example:

INTEGER the number of surviving children
 PROMPT how many children survived the intestate
 TRANSLATE 0 AS no children survived the intestate
 TRANSLATE 1 AS one child survived the intestate
 TRANSLATE AS <> children survived the intestate

Where no value appears (as in the last TRANSLATE statement above) this is used
as the default translation for values which do not match any of the other
TRANSLATE statements.

Avoid using your own fact prompts or translations if possible. Code is easier to
maintain if translations are automatic.

3.4 Named subjects - names of people and things
Fact descriptors often contain references to persons and things as their subjects
(eg ‘the intestate’, ‘the property’). By default, the generated prompts and
translations just use these embedded subject descriptions literally. If you wish,
you can have these automatically replaced with names, pronouns and

Descriptors, Keywords and Expressions

26

possessives. Subjects which are to be treated in this way are referred to as
named subjects.

The use of named subjects allows you to instantiate the dialogues that DataLex
generates, making them appear much more responsive to the answers you have
already given.

Use named subjects wherever possible, as they improve communication.

3.4.1 Named subject declarations

Named subjects are a set of special facts. They are declared in the same way as
facts, but are given the types PERSON, THING or PERSONTHING. When a fact
containing a defined subject is first evaluated, automatic prompts for a subject
name and, in the case of persons, the subjects' preferred gender and preferred
form of address, will be issued. Where the type is PERSONTHING, the subject
may be either a person or a thing (eg where either a natural person or a company
may be a subject). A prompt (Is x a person ?) will be issued to determine this.

Examples:

PERSON the claimant
THING the agreement
PERSONTHING the first party
PERSON the intestate

Once a named subject is declared, it will be recognised as a named subject in any
subsequent reference to facts, without need for any further identification of it as
such. Named subjects referred to in other facts are recognised automatically, and
their values are substituted in the other facts.

For example, where there have been named subject declarations such as the
ones above, a fact in a rule such as ‘the claimant has made a statutory
declaration concerning the agreement’ would generate a prompt such as ‘Has
John Smith made a statutory declaration concerning the Contract of Insurance?’.

3.4.2 The automatic fact declarations [advanced]

When a named subject is declared, it results in up to another three automatic fact
declarations. These take the following forms:

the name of subject (set for all types)
the gender of subject (set for PERSONS and PERSONTHINGs)
the preferred form of address for subject (PERSONS/PERSONTHINGs)
subject is a person (set only for PERSONTHINGs)

Descriptors, Keywords and Expressions

27

These automatically declared facts can be manipulated just like normal ones. The
types are STRING, GENDER, STRING and BOOLEAN respectively. This allows you
to work out whether or not a PERSONTHING is a natural person, or to force
gender as in:

PERSONTHING the client
RULE common sense about companies PROVIDES
IF the client is a person THEN
 the client is not a company

It also allows you to change the default prompts and translations, as in:

PERSONTHING the claimant

STRING the name of the claimant
 PROMPT please enter the claimants' name
 TRANSLATE AS the claimants' name is

BOOLEAN the claimant is a person
 TRANSLATE true AS the claimant is a person
 TRANSLATE false AS the claimant is a company

SEX the gender of the claimant
 TRANSLATE male AS the claimant identifies as male
 TRANSLATE female AS the claimant identifies as female
 TRANSLATE unspecified AS the claimant does not identify
 as being male or female

3.5 Expressions - the use of operators
An expression consists of fact and constant references, connected by operators
(types of keywords). Expressions are used to build more complex statements.
Fact names and constants have already been discussed. Operators therefore
describe relationships between two facts (in the case of binary operators), or (in
the case of a Unary operator) transform an existing fact. The available operators
(in order of precedence) are:

3.5.1 (Pre) Unary Operators
NOT boolean NOT
DAY extract day from date
MONTH extract month from date
YEAR extract year from date

3.5.2 (Post) Unary Operators
DAYS date days multiplier
WEEKS date weeks multiplier
MONTHS date months multiplier

Descriptors, Keywords and Expressions

28

YEARS date years multiplier

3.5.3 Binary Operators
DIVIDED BY arithmetic division
TIMES arithmetic multiplication
PLUS arithmetic addition
MINUS arithmetic subtraction

IN relation in (substring)
EQUALS relational equality
NOT EQUALS relational inequality
IS GREATER THAN relational greater than
IS LESS THAN relational less than
IS GREATEREQUAL THAN relational greater equals
IS LESSEQUAL THAN relation less or equal

AND boolean conditional AND
OR boolean conditional OR

(The normal AND and OR; AND has higher
binding strength than OR; evaluation of
expressions ceases where an ‘AND’ condition
fails or an ‘OR’ condition is satisfied, and
does not evaluate the other arguments in the
expression)

AND/OR boolean conditional OR (high binding)
(A special OR with a higher binding strength
than AND; use instead of BEGIN-END pairs to
ensure the order of evaluation)

AND/WITH boolean non-conditional AND
OR/WITH boolean non-conditional OR
AND/OR/WITH boolean non-conditional OR (high binding)

(Special AND and OR operators where
evaluation continues the other arguments in
the expression even though an ‘AND’
condition fails or an ‘OR’ condition is
satisfied; Used to force evaluation of all
alternatives.)

3.5.4 Examples of the use of expressions
the year in which the layout was made PLUS 10
the date of death PLUS 50 YEARS
YEAR the date of death
the value of the estate IS GREATER THAN 0

Rules and Statements

29

4 Rules and Statements

4.1 Order of evaluation of rules
Rules are executed (or evaluated) as follows:

(i) A session commences by executing a goal rule - see 4.2 below concerning
‘GOAL’ rules for how such goal rules are specified.

(ii) As statements in the rule are executed, where the value of a fact is unknown
the system will execute other rules that potentially may derive a value for the
fact. Rules are invoked on a backward and forward chaining basis, in that rules
are first invoked in a backward-chaining fashion whenever a fact needs to be
evaluated in order to determine whether a rule will ‘fire’. However, whenever a
new fact value becomes known, all rules using that fact are silently evaluated (a
forward chaining daemon).

However, which rules participate in the backward chaining process and which in
the forward chaining process, and how they do so, is determined to some extent
by what types of rules they are declared to be - see below concerning Types of
rules. During the course of executing a rule, it can explicitly CALL another rule.

(iii) Once the original goal rule has completed, execution finishes. A report
explaining each of the conclusions reached from the goal rule is displayed.

4.2 Goal rules
Goal rules are indicated by inserting the keyword GOAL before the RULE
declaration. For example:

GOAL RULE Copyright Act 1968 s32(4) PROVIDES

Where no goal rules are declared, then the first rule will be regarded as the goal.
If this is the case or there is only one goal rule then the user session will evaluate
this rule.

4.2.1 Multiple GOALS

More than one rule may be declared to be a GOAL. When DataLex is invoked it
will automatically present the user with a list of the names of all rules specified
as GOALS, and ask the user which one is to be evaluated. Names of rules which
are GOALS must therefore be sensible enough to appear in a menu of goals.

Rules and Statements

30

4.3 Order of evaluation of rules
When the system is attempting to derive a fact value using backward and/or
forward chaining rules, it will evaluate rules in the order in which they appear in
the code. The order of appearance will not normally have any effect on the
outcome but can affect whether questions of the user are asked in a sensible
order. More general rules should be declared before more specific ones, where
they relate to the same subject matter. Procedures may be declared in any order.

4.3.1 Calling rules [advanced]

All types of rules can be specifically CALLed. The syntax is:

CALL rule-name

The statements for the named rule or procedure will be executed and control will
be returned to the next statement after the CALL.

4.3.2 Rule names

The rule name is used to document what the rule is about and to give a point of
reference for calls. Each rule name should be different. Rule names are essential
if a rule is to be a GOAL RULE, because the user must know which rule they are
choosing to evaluate. Rule names are optional but should be used.

Examples of some ways of naming rules:

RULE subsistence of copyright PROVIDES

RULE Copyright Act s36(1) PROVIDES

RULE Copyright Act s36(2) PROVIDES

RULE Copyright Act s36(2) [continuation 1] PROVIDES

4.3.3 The ORDER declaration [advanced]

The order of rule evaluation can be controlled by specifying the rule order in an
ORDER block, with the syntax: ORDER rule-name {THEN rule-name}

The main purpose of this is to allow rules to be written in the order in which they
appear in legislation, without this necessarily determining the order in which they
might fire. An order declaration must appear before the rules named. In practice,
this feature is generally never used.

Rules and Statements

31

4.4 Types of rules

4.4.1 Default rule type

The default rule type is both backward chaining and a forward-chaining daemon.
So, a rule that starts

RULE name of the rule PROVIDES ...

 will be both backward and forward chaining, in default of any other specification.

Use the default form unless there is good reason not to.

4.4.2 Declaring other types of rules

You can alter this rule behaviour by declaring the type of the rule. The possible
types are BACKWARD, DAEMON, DOCUMENT, FORWARD and PROCEDURE. Each is
explained below.

To declare that a rule is a particular type, you put the type of the rule before the
keyword RULE at the start of the rule. Examples:

BACKWARD RULE the name of the rule PROVIDES ...

This rule will only be backward chaining.

FORWARD RULE the name of the rule PROVIDES ...

This rule will only be forward chaining.

4.4.3 Syntax for rule types

The rule declaration syntax is:

[GOAL] PROCEDURE|DAEMON|BACKWARD|FORWARD|RULE
 [RULE] [name] PROVIDES statements

4.4.4 Backward rules

If a rule is declared to be a BACKWARD RULE it is only ever used for backward
chaining.

4.4.5 Forward rules

FORWARD RULES are only used for forward-chaining. A FORWARD rule is
evaluated when the first fact needed to execute the rule becomes known. Where

Rules and Statements

32

necessary, FORWARD rules will ask the user for any other fact value necessary to
evaluate the rule (ie they do not operate ‘silently’ - they ask questions where
necessary).

4.4.6 Daemons

DAEMONS are like FORWARD rules but operate silently (ie they never ask the user
for information and will silently fail to fire if they need to do so).

4.4.7 Procedures

PROCEDURES are not invoked by either forward or backward chaining. Evaluation
of a procedure must be invoked explicitly, either by the procedure being called
(see 4.6.8 below concerning calls), or by the procedure being declared to be a
goal and invoked as a goal.

4.4.8 Documents

DOCUMENTS are like procedures but are used to generate documents (see later
Chapter 6 concerning Documents).

4.5 Generic rules [advanced]
Sometimes you may have to write rules which relate to different subjects, but
which are otherwise identical. Rather than having to rewrite the rules, rules can
be written that include facts with one (only) variable element, which element is
represented as <>. A generic rule is therefore a shorthand way of writing multiple
rules with slightly different wordings.

Whenever the rule parser encounters this <> symbol in a rule, it looks for
instance of the fact in other rules which are identical except that they have the
variable element ‘filled in’. These instances of the variability are then ‘read into’
the rule under consideration.

In effect, multiple versions of the rule are automatically created, one for each
instance of the variable element being satisfied. In any expression containing the
<> variable, each instance of the <> variable will be given the same value.

For example, s32(4) of the Copyright Act 1968 (Cth) specifies whether a person is
a ‘qualified person’ in determining whether a work is protected by copyright.
Various different timing and other conditions can satisfy the requirements for a
‘qualified person’. The rule below shows that only one rule need be written to
capture this.

Rules and Statements

33

RULE Copyright Act 1968 s32(4) PROVIDES
 the author was a 'qualified person' <> under s32(4) ONLY IF
 the author was an Australian citizen <> OR
 the author was an Australian protected person <> OR
 the author was a person resident in Australia <>

If the system needs to determine at any time a value for the fact “the author was
a ‘qualified person’ at the time the work was made under s32(4)” (emphasis
added), in order to process another rule, the above rule will cause the following
questions to be asked:

Was the author a 'qualified person' at the time the work was made
under s32(4)? [emphasis added]

Was the author an Australian protected person at the time the work
was made under s32(4)? [emphasis added]

Was the author a person resident in Australia at the time the work
was made under s32(4)? [emphasis added]

If the answer to any of these is ‘yes’, the rule will fire and the fact “the author
was a ‘qualified person’ at the time the work was made under s32(4)” will obtain
a ‘true’ value.

Similarly, if the system needs to know a value for the fact, “the author was a
‘qualified person’ for a substantial part of the period during which the work was
made under s32(4)” (emphasis added), the rule will ask the appropriate
questions to obtain a value for this fact.

In other words, one generic rule can be used to obtain values for numerous
similar but not identical facts which have similar conditions for their satisfaction.

Generic rules should only be used sparingly and with considerable care.

4.6 Statements
Rules are comprised of statements. There are several different types of
statements. These include: assignments and assertions (using ONLY IF, IS and
ASSERT), conditional evaluation of facts (using IF-THEN and IF-THEN-ELSE
statements), conditional looping (using WHILE-DO and REPEAT-UNTIL
statements), DETERMINE statements and CALL statements.

For most purposes, conditional evaluation of facts (IF-THEN-ELSE) and
assignments and assertions (using ONLY IF, IS and ASSERT) are the only types
that need to be used.

Rules and Statements

34

4.6.1 IF-THEN-ELSE statements

IF-THEN-ELSE statements provide for conditional evaluation of facts. The syntax
is:

 IF expression THEN statement [ELSE statement]

expression is evaluated and if true, the statement following the THEN is executed.
If an ELSE statement is provided and expression evaluates false, then the
statement following ELSE will be executed.

The ELSE part of the statement is optional.

Examples:

IF it is raining THEN
 you should take an umbrella
ELSE
 you should go out

4.6.2 Inclusive definitions

Where a statutory definition is only inclusive (ie not exhaustive), the IF-THEN
form is appropriate. For example, the definition of ‘dramatic work’ in the
Copyright Act 1968 (Cth) can be represented in part as

IF the work is a choreographic work or other dumb show OR the work
is a scenario for a script for a cinematograph film THEN
 the work is a dramatic work

There is no ELSE because many other undefined types of drama may qualify as
dramatic works.

One rule can include a number of IF-THEN statements in succession.

4.6.3 Assignments and Assertions

Values may be assigned to facts by use of the IS operator (or the equivalent
ONLY IF operator) or (in the case of boolean facts) by assertion.

4.6.4 Assertions

An assertion is used to state that a proposition (fact) has a true or false value (ie
to assert that it is true or false). Assertions can therefore only be used with
boolean (true or false) facts. An assertion statement simply consists of a boolean
fact name expressed in the positive or negative form, optionally preceded by the
keyword ASSERT (where necessary to separate the assertion from a previous

Rules and Statements

35

statement). Multiple assertions can be separated by an AND operator (which is
sometimes more natural). For example:

the Act applies

is the same as

ASSERT the Act applies

The following are also the same:

the corporation is an overseas corporation AND
 the Act does not apply

ASSERT the corporation is an overseas corporation AND
 the Act does not apply

The ASSERT keyword should only be used where it is necessary to separate
multiple assignments and assertions, or to separate an assignment or assertion
from a previous expression. For example:

IF the circuit layout is in writing THEN
 the circuit layout is in material form
ASSERT the circuit layout is an eligible layout

4.6.5 Assignments

IS and ONLY IF are used to assert that two facts have identical values (but not
that either are true/false), or that a fact is identical to a constant. They can
therefore be used in either of two ways:

 fact IS constant

 fact1 (unknown) IS fact2 (known)

There is no difference between the IS and ONLY IF operators, but normally the
use of IS will yield more natural English statements in relation to valued facts
(dates, numbers etc) where ONLY IF is more appropriate in the case of booleans
(true/false).

4.6.6 Syntax for assignments and assertions

The syntax for assertions is:

[ASSERT] fact { AND fact }

The syntax for assignments is:

 [ASSERT] fact IS expression

 or [ASSERT] fact ONLY IF expression

Rules and Statements

36

Where an ELSE statement is merely the negation of a THEN statement, this is
exactly the same as an ONLY IF statement (which is preferable as it is more
understandable). For example,

IF it is raining THEN
 you should take an umbrella
ELSE
 you should not take an umbrella

would be better expressed as

you should take an umbrella ONLY IF
 it is raining

4.6.7 DETERMINE Statement

The DETERMINE statement allows for control over fact evaluation. The syntax is:

 DETERMINE [IF] fact

The effect is to cause the value of fact to be determined by first evaluating any
relevant backward chaining rules (commencing with any which have fact as a
conclusion), and then, if necessary, prompt the end-user for a value.

The DETERMINE statement is sometimes useful as part of a GOAL RULE. For
example, the FOI example given earlier could commence with a rule including the
statement:

DETERMINE IF a person has a legally enforceable right under s11 to
obtain access to a document

However, this procedural approach will defeat the purpose of a declarative rule
base if mis-used. In the above example, it would provide no advantages.

Avoid the use of DETERMINE statements.

4.6.8 CALL Statement [advanced]

The CALL statement allows rules and procedures to be invoked explicitly. The
syntax is:

CALL procedure-name

The statements for the named rule or procedure will be executed and control will
be returned to the next statement after the CALL. They are valuable mainly for
document generation, which is inherently procedural (see Chapter 6).

Rules and Statements

37

Use of CALLs should generally be avoided (except in DOCUMENT rules).

4.6.9 WHILE-DO and REPEAT-UNTIL Statements

The WHILE-DO and REPEAT-UNTIL statement pairs, provide for conditional
looping. The syntax is:

 WHILE expression DO statement

 and REPEAT statements UNTIL expression

4.6.10 Use of BEGIN - END pairs

Multiple statements can be grouped by use of a BEGIN-END pair. This is the
same as using parentheses to group statements.

Example:

IF the Act does not apply THEN BEGIN
 the claimant fails AND
 there is nothing more to do
END

The use of BEGIN-END pairs is largely unnecessary due to the AND/OR operator
(see below).

DataLex Integration with AustLII

38

5 DataLex Integration with AustLII

5.1 Overview - Integration with their sources
DataLex has five principle features which enable it to be integrated into the web
context, and, in particular, into AustLII and AustLII Communities:

1. Automated addition of links to AustLII legislation;
2. Automated addition of links to case law on AustLII or any collaborating

legal information institute (LII), or with a citation table in the LawCite
citator;

3. Explicit links to any other web resources;
4. Explicit links to searches over AustLII (or other search engine); and
5. Cooperative inferencing using rule-bases from multiple pages or sites.

Further forms of integration which are not yet available are the inclusion of links
from AustLII primary materials to DataLex rule-bases, and the inclusion of rule-
bases in AustLII search results.

See the articles listed in Chapter 1 for the theoretical advantages of various types
of integration discussed in this chapter.

5.2 Automatic links to AustLII legislation
Links to names of Acts (and sections within Acts) that are located on AustLII can
be added automatically to your knowledgebase, without the need to create
explicit links to those Acts or sections.

To effectively create links to AustLII legislation, observe the following guidelines:

• Each time an Act or section is referred to in the body of a rule, put the full
name of the Act and section (for example ‘Privacy Act 1988 section 6D’).
If the Act name is not included, the mark-up software might not be able to
determine in which Act the section is to be found.

• Reference to ‘section 5’ or ‘s.5’ or ‘s5’ or ‘s5(3) or ‘subsection 5(3)’ are
effective, but ‘paragraph 5(3)’ is not – change ‘paragraph’ to ‘section’.

• Automatic links are not created to words defined in Acts. However, as
shown below, explicit links can be created to such definitions.

• Automatic links are not (as yet) provided to legislation in jurisdictions
outside Australia, but explicit links may be created to such legislation (see
below).

DataLex Integration with AustLII

39

5.3 Automatic links to case law
Where a decision in a case is properly cited (either by a neutral citation or
proprietary citation) in the name of a rule, or in the body of the rule, this will
result in the automatic creation of a hypertext link to either (i) the text of the
decision, if the decision is included in AustLII or another collaborating LII (eg
NZLII, BAILII, HKLII, PacLII, SAFLII, CanLII), or (ii) the LawCite citator, if the
decision has a citation table there. The LawCite record for a decision can also be
accessed from that decision.

Links to these cases are available in relevant reports and explanations, and to
provide assistance when the user is answering questions relevant to a case. For
example, in the Finder KB application, when the user is asked about the finder of
a chattel ‘Was he the occupier of the premises?’, and responds ‘Why?’, the
system replies ‘This will help determine whether or not the situation is similar to
Armory v Delamirie [1722] EWHC KB J94.’, with a link to the LawCite citator
entry.

As discussed in Chapter 6, with EXAMPLE rules based on decisions in particular
cases, it is particularly important that a full title and citation for the decision be
included in the title of the EXAMPLE. Automatic links to cases in Reports means
that the user can go to the cases cited in the Report, in order to assess whether
they agree with the suggestions for following and distinguishing particular cases
given in the Report. In making such a decision they can inspect not only the text
of the suggested cases, but also the LawCite record for each of the suggested
cases in order to determine whether there are subsequent cases that have a
bearing on the suggested cases (and may have been decided after the rule-base
was written). For discussion of the value of such facilities, see the article
‘Utilising AI in the Legal Assistance Sector – Testing a Role for Legal Information
Institutes’ cited in Chapter 1.

5.4 Explicit links in a rule-base (the LINK ... TO ... keywords)
In addition to automatic links to AustLII, specific links can be specified in the
rule-base. The keywords LINK and TO are used to specify in a rule-base that a
particular word or phrase is always to appear as a hypertext link to a particular
URL. This is very useful for creating links to definitions or cases.

LINK ...TO ... can be used to create links from a rule-base to anywhere on the
World-Wide-Web, not just to AustLII.

http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html

DataLex Integration with AustLII

40

5.4.1 Example
LINK document of an agency TO
http://www2.austlii.edu.au/au/legis/cth/consol_act/foia1982222/s4.h
tml#document_of_an_agency

RULE Freedom of Information Act 1982 (Cth) s11(a) PROVIDES
s11(a) applies ONLY IF
 the document is a document of an agency AND
 the document is not an exempt document

5.5 Stored searches from DataLex rule-bases
It is also possible to use LINK ...TO ... to create links from a rule-base to a stored
search over AustLII, or over any other web-based search engine.

5.5.1 Example

To link to a search over AustLII for the phrase ‘official document of a Minister’:

LINK official document of a Minister TO
http://www.austlii.edu.au/cgi-
bin/sinosrch.cgi?method=auto&query=%22official+document+of+a+Minist
er%22

RULE Freedom of Information Act 1982 (Cth) s11(b) PROVIDES
s11(b) applies ONLY IF
 the document is an official document of a Minister AND
 the document is not an exempt document

5.6 ‘Co-operative inferencing’
‘Co-operative inferencing’, as we are tentatively calling it, is an innovative aspect
of DataLex. It allows different rule-base developers to place rule-bases on any
web page anywhere in other rule-bases located elsewhere on the web which they
specify are to be ‘included’. In this sense, rule-base development becomes a ‘co-
operative’ activity where developers can contribute their small (or not so small)
rule-bases to a larger enterprise.

5.6.1 The INCLUDE keyword

The use of the keyword INCLUDE in a rule-base, followed by the URL of another
page containing a DataLex rule-base, will cause the second rule-base to be
loaded with the first rule-base, and the two run together.

More than two rule-bases can be declared to be INCLUDEd. There is no limit on
the number.

DataLex Integration with AustLII

41

It does not matter if an INCLUDEd rule-base INCLUDEs the rule-base that
INCLUDEd it - ie DataLex does not go into an endless loop loading the same rule-
bases.

It is useful to make the URLs of INCLUDEd rule-bases live links, so that users of a
rule-base can conveniently view all rule-bases which are to be included in a
consultation. See the ‘FOI s11 (start here)’ rule-base for examples.

5.6.2 Example

To include a KB ‘DefinitionOfDocument’ in the evaluation of this freedom of
information KB, so that the fact ‘the item requested is a document’ will be
evaluated:

INCLUDE
http://austlii.community/foswiki/DataLex/DefinitionOfDocument
GOAL RULE Access to documents under Freedom of Information Act 1982
(Cth) s11 PROVIDES
 the person applying does have a legally enforceable right
under s11 of
 the Freedom of Information Act 1982 to obtain access to the
 document requested ONLY IF
 the item requested is a document AND
Freedom of Information Act 1982 s11 (1)(a) applies AND/OR
Freedom of Information Act 1982 s11 (1)(b) applies

5.6.3 Specifying a goal

As in the example above, you must specify which rule is the GOAL RULE that is to
start the consultation, because the operation of INCLUDE means that you cannot
be certain which rule DataLex will consider is the first one appearing in your rule-
base.

If more than one GOAL RULE is specified in a set of ‘co-operative’ rule-bases, the
user will be given a choice of which rule is to start the consultation. GOAL RULEs
may be declared in any rule-base.

http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/index.html
http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/s11.html
http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/s11.html
http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/index.html
http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/index.html
http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/s11.html
http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/index.html
http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/s11.html

Document Assembly using DataLex

42

6 Document Assembly using DataLex

DataLex includes an automated document generation (or ‘assembly’) component.
This aspect is not yet developed fully. The features described below are sufficient
to generate simple documents.

6.1 DOCUMENT rules
Documents may be generated by declaring rules of type DOCUMENT. Normally,
one DOCUMENT rule will generate one paragraph of a document, and a group of
rules can be used to generate all the clauses of a legal document. DOCUMENT
rules differ from other types of rules only in that the statements PARAGRAPH and
TEXT are available to write paragraphs to documents. The syntax is discussed
below under the heading Statements.

Document rules are only ever effective if they are declared a GOAL rule or if
explicitly called (via the CALL statement) from other rules.

6.1.1 DOCUMENT rules as goals

If the GOAL rule is a DOCUMENT rule, the usual report generated by a
consultation is replaced by the generated document (ie no report is generated).

6.1.2 Example - a clause of a will

The following example is a DOCUMENT rule for one clause of a will, with two
alternative conditional forms of the clause. The elements of the example are
explained below.

DOCUMENT Revocation PROVIDES
IF all former testamentary dispositions are to be revoked THEN
 NUMBERED PARAGRAPH I revoke all former testamentary
dispositions.
ELSE
 NUMBERED PARAGRAPH I revoke all former testamentary
dispositions
 except clause(s) <list of clauses from the old will which are
to be
 saved> of my testamentary disposition dated <the date of the
old will>
 which clause(s) I hereby confirm.

Document Assembly using DataLex

43

6.2 Text generation statement types - PARAGRAPH and TEXT
The two statement types PARAGRAPH and TEXT allow text to be added to
documents from rules of type DOCUMENT. They have no effect in non-document
rules, and should not be used in such rules. The syntax for these special types of
document statements is:

[NUMBERED] [LEVEL number] [PARAGRAPH|TEXT] text

6.2.1 The text argument and embedded facts

The text argument is a piece of text to be generated as part of the document
being assembled if the conditions of the rule are satisfied. A text argument may
include embedded facts, but is not in itself a fact.

For example, the following statement would cause all of the text after
‘PARAGRAPH’ to be printed in a new paragraph. The values of the embedded
facts (the facts within angle brackets ie <>) will be obtained from the user in a
dialogue (see below).

PARAGRAPH I revoke all former testamentary dispositions
except clause(s) <list of clauses from the old will which are to be
saved> of my testamentary disposition dated <the date of the old
will>
which clause(s) I hereby confirm.

The example given above and on the previous page will generate the following
dialogue:

1) Are all former testamentary dispositions to be revoked ?
 ** n

2) What is list of clauses from the old will which are to be saved?
 ** 1, 5 and 17

3) What is the date of the old will ?
 ** 1 May 1993

 REPORT

 1. I revoke all former testamentary dispositions except
 clause(s) 1, 5 And 17 of my testamentary disposition dated
 1 May 1993 which clause(s) I hereby confirm.

6.2.2 Differences between PARAGRAPH and TEXT

The difference between the two types of statements is simply one of layout: the
PARAGRAPH statement starts a new paragraph and TEXT just inserts a space (ie
no new line).

Document Assembly using DataLex

44

PARAGRAPH must be used to cause a new paragraph of text to be included in a
document. It is insufficient to simply place new paragraphs or lines in the text
argument, as DataLex will ignore these when it generates the document.

For example, the statements:

PARAGRAPH I revoke all former testamentary dispositions.

I give all my property to my husband.

will be generated as:

I revoke all former testamentary dispositions. I give all my
property to my husband.

The correct code to cause the second sentence to be a new paragraph is:

PARAGRAPH I revoke all former testamentary dispositions.
PARAGRAPH I give all my property to my husband.

6.3 ‘Personalising’ documents - embedded facts
Where a document contains variable information (eg the name of the testator, the
value of property, the date of death), this variable information (a fact) can be
included in the text of a document statement by embedding the fact in the text.
In the example above, the embedded fact ‘<list of clauses from the old will which
are to be saved>’ will cause the user to be prompted to list those clause
numbers, and the numbers will then be included in the generated document. The
embedded fact ‘<the date of the old will>’ will cause the user to be prompted for
the value of that fact.

6.3.1 Named Subjects in documents

Named subjects will not be replaced in text. For example, the declarations

DATE the date of the old will
STRING list of clauses from the old will which are to be saved

will not cause the user to be asked for values in a rule where angle brackets have
been omitted, such as

PARAGRAPH I revoke all former testamentary dispositions
 except clause(s) list of clauses from the old will which are
to be saved of my testamentary disposition dated the date of
the old will which clause(s) I hereby confirm.

Document Assembly using DataLex

45

It is necessary to put facts in angle brackets (< >); merely making them named
subjects is insufficient.

However, merely putting a fact in angle brackets does not give it a type - to do so
it is necessary to declare it as a named subject as well. For example, in the
dialogue above, an answer ‘a few weeks ago’ to the question ‘What is the date of
the old will ?’ will be accepted. In contrast, if the declaration ‘DATE the date of
the old will’ had been made, the following dialogue will occur:

 3) What is the date of the old will ?
 ** a few weeks ago

 Please respond with a date.

It is preferable to declare all embedded facts as named subjects, as well as
embedding them in angle brackets, so as to ensure that the user always gives the
correct type of answer (eg a date).

6.4 Alternative clauses in a document
An important element in document assembly is to allow alternative versions of a
clause or paragraph or sentence to be generated, depending on the user’s
circumstances. For example, the structure of the example given above for a
clause of a will is as follows:

DOCUMENT Revocation PROVIDES
IF all former testamentary dispositions are to be revoked THEN
 NUMBERED PARAGRAPHAlternative text (1).......
ELSE
 NUMBERED PARAGRAPHAlternative text (2)........

Because of the use of the IF-THEN-ELSE statement, which version of the clause
is generated depends upon the value of the fact ‘all former testamentary
dispositions are to be revoked’. The user will be prompted for a value for this fact
by being asked ‘Are all former testamentary dispositions to be revoked?’. If the
user answers ‘yes’, then text (1) will be generated, but otherwise (ELSE) text (2)
will be generated.

By the use of IF-THEN-ELSE statements, and any other conditional statements
used in DataLex, templates for complex documents may be created.

6.5 Generating successive paragraphs of a document - use of
CALL statements

The discussion above concentrates on the generation of single paragraphs of
documents. To assemble a whole document it is usually necessary to create a

Document Assembly using DataLex

46

GOAL rule which provides an overall procedural order for the creation of the
document. For example, in the Will Generator example below, the following
GOAL rule is used:

GOAL DOCUMENT Last Will & Testament PROVIDES
 the date of execution of the will IS today
 CALL Preamble
 CALL Revocation
 CALL Contemplation of Marriage

By use of the CALL statement, this rule calls three other rules in succession,
those with the names ‘Preamble’, ‘Revocation’ and ‘Contemplation of Marriage’.
In effect, it provides that this is the correct order of assembly of the clause of this
document. The names following CALL must match the names of DOCUMENT
rules.

The use of CALL statements may also be made conditional. For example, where a
clause generated by a rule named ‘Revocation’ can only be used if a particular
section of an Act applies (eg the Contracts Act s17), then the following CALL
statement could be used:

IF s17 Contracts Act applies THEN CALL Revocation

6.5.1 Document generation is essentially procedural

This use of CALL statements as the basic method of assembling documents
means that document assembly with DataLex is essentially procedural rather
than declarative. Backward and forward chaining rules will rarely be useful to
control the order of assembly of a document, because their normal usage is as
rules which fire when needed, rather than in a controlled order (such as occurs
with CALL statements). However, as discussed below, the evaluation of facts
used in DOCUMENT rules may trigger the operation of backward and forward
chaining rules.

6.6 Numbering paragraphs

6.6.1 The NUMBERED keyword

If a statement is prefixed with the NUMBERED keyword, the paragraph will be
numbered automatically.

Document Assembly using DataLex

47

6.6.2 The LEVEL keyword

The optional LEVEL keyword is used to control the type of numbering to be
employed. number must be between 1 and 7 (inclusive). The numbering style at
each level is:

 1. Level One

 (1) Level Two

 (a) Level Three

 (i) Level Four

 (A) Level Five

 (I) Level Six

 - Level Seven

Levels can be skipped (ie it is possible to go directly, say, from Level One to Level
Three).

6.7 Integration of inferencing and document generation
One of the main strengths of DataLex as a document generator is that the
document generation is fully integrated with any reasoning associated with rules
or otherwise. Therefore, where the evaluation of any statutory provision or other
legal condition is a precondition for the generation of part of a document, it is
only necessary to make the appropriate fact a condition in the DOCUMENT rule.

For example, a statement in a DOCUMENT rule such as

IF the Act applies THEN PARAGRAPH(text follows)...

will cause the system to backward chain to evaluate a rule that has 'the Act
applies' as a conclusion.

Note that the first DOCUMENT rule must be a GOAL rule or else DataLex will not
produce a document.

6.8 Use of other DataLex features with document assembly
Some normal DataLex commands do not have any meaningful use when a
DOCUMENT rule is being evaluated. The ‘Why’ command will only result in
sensible answers when DataLex is evaluating a fact in a RULE.

Conclusions from rules are generated during a document generation session, and
are shown as numbered blue buttons. Explanations (How?) can be shown by

Document Assembly using DataLex

48

selecting a conclusion. If a document is generated by a consultation, no separate
Report is also generated – the Document replaces the Report.

The following DataLex functions do operate with document assembly: Facts
(‘What’ command) appear as numbered green buttons; ‘Forget’ and ‘Forget All’
will forget facts and generate alternative documents.

Hypertext links to legislation (automatic links) or to defined terms or other text
(explicit links) can be used with document generation in the same fashion as with
other DataLex inferencing.

6.9 Example - a will generator
See <http://austlii.community/wiki/DataLex/WillGeneratorKB> for the simple
will generator reproduced below. Note the following aspects:

• The GOAL Document is largely comprised of procedural steps.
• The fact ‘the person making the Will is legally capable of making a Will’

causes the evaluation of the ‘Capability’ rule, by backward chaining. This
rule could be expanded much further.

• The use of embedded facts such as <list of clauses from the old will which
are to be saved>, <the testator/testatrix’s fiancee> and <the joint
beneficiaries>.

DATE the date of execution of the Will
DATE the date of the old Will
INTEGER the maximum number of months within which the wedding must take
place
PERSON the person making the Will
PERSONTHING the sole beneficiary
PERSON the sole executor
PERSON the testator/testatrix's fiancee
PERSON the joint beneficiaries

GOAL DOCUMENT Last Will & Testament PROVIDES
IF the person making the Will is legally capable of making a Will THEN
BEGIN
 CALL Disclaimer
 CALL Preamble
 CALL Revocation
 CALL Contemplation of Marriage
 CALL Sole Beneficiary
 CALL Attestation END
ELSE the person making the Will should not make a Will

RULE Capability PROVIDES
the person making the Will is not legally capable of making a Will ONLY
IF the person making the Will is not of sound mind
OR s6 of the Wills, Probate and Administration Act 1898 applies OR the
person making the Will is subject to some other form of incapacity

DOCUMENT Disclaimer PROVIDES
PARAGRAPH Disclaimer: This is not a real Will and must not be used as
such.

http://austlii.community/wiki/DataLex/WillGeneratorKB

Document Assembly using DataLex

49

This will does not purport to accurately represent the law of any
jurisdictions.

DOCUMENT Preamble PROVIDES
PARAGRAPH This will dated <the date of execution of the Will> is
made by me <the person making the Will>, of
<the testator/testatrix's address>, <the testator/testatrix's
occupation>.

DOCUMENT Revocation PROVIDES
IF all former testamentary dispositions are to be revoked THEN
 NUMBERED PARAGRAPH I revoke all former testamentary dispositions.
ELSE
 NUMBERED PARAGRAPH I revoke all former testamentary dispositions
 except clause(s) <list of clauses from the old will which are to be
 saved> of my testamentary disposition dated <the date of the old
Will> which clause(s) I hereby confirm.

DOCUMENT Contemplation of Marriage PROVIDES
IF this Will is to be made in contemplation of marriage THEN
 IF the Will is to be conditional on the marriage actually
 taking place THEN
 IF the person making the Will is domiciled in Western Australia
AND
 the person making the Will does not own immovables in other States
 THEN
 NUMBERED PARAGRAPH This will is made in contemplation of
 my marriage with <the testator/testatrix's fiancée>.
 ELSE
 NUMBERED PARAGRAPH This will is made in contemplation of
 my marriage with <the testator/testatrix's fiancée> and is
 conditional on the marriage taking place within <the
 maximum number of months within which the wedding must
 take place> months.
 ELSE IF the testator/testatrix is domiciled in Western Australia
THEN
 NUMBERED PARAGRAPH This will is made in contemplation of
 my marriage with <the testator/testatrix's fiancée>
 but shall not be void if the marriage does not take place.
 ELSE
 NUMBERED PARAGRAPH This will is made in contemplation of
 my marriage with <the testator/testatrix's fiancée>
 but is not conditional on the marriage taking place.

DOCUMENT Sole Beneficiary PROVIDES
IF everything disposed of under the Will is to be left one person THEN
BEGIN
 IF the sole beneficiary is over 18 THEN
 NUMBERED PARAGRAPH I give the whole of my estate to <the sole
beneficiary> whom I appoint my sole executor.
 ELSE BEGIN
 NUMBERED PARAGRAPH I give the whole of my estate to <the sole
beneficiary>
 NUMBERED PARAGRAPH I appoint the <the sole executor> as my sole
executor. END
END ELSE BEGIN
 NUMBERED PARAGRAPH I give the whole of my estate in equal shares
to <the joint beneficiaries>
 NUMBERED PARAGRAPH I appoint the <the sole executor> as my sole
executor. END
DOCUMENT Attestation PROVIDES
PARAGRAPH Signed by the testator in our presence and attested by us in
the presence of him and each other.

Case-based (Example-based) Reasoning using DataLex

50

7 Case-based (Example-based) Reasoning using
DataLex

7.1 Example-based reasoning – overview
In addition to rule-based reasoning, DataLex also supports one very limited form
of analogous reasoning (also known as ‘example-based’ or ‘case-based’
reasoning). This form of analogous reasoning is based on a method of measuring
similarity of examples (and drawing conclusions from this) called PANNDA
(Precedent Analysis by Nearest Neighbour Discriminant Analysis), developed by
Alan Tyree and described in his book Expert Systems in Law, Prentice Hall, 1990.
See also further explanation below.

The PANNDA component is included in this version of DataLex primarily to allow
experiments to be carried out in (i) quasi-natural language representations of
examples; (ii) the integration of rule-based and case-based reasoning, and (iii)
the integration of case-based reasoning with hypertext and text retrieval. The
inferencing methods used by PANNDA are, in this context, of secondary interest
and not the main point of the exercise, although they are of interest in their own
right.

7.2 Interaction between examples and rules
PANNDA is implemented in DataLex as types of rules which are called
EXAMPLEs. A set of EXAMPLEs is used, for example, to represent all of the cases
on a particular legal question. This legal question will be represented as a fact
which is the conclusion of each EXAMPLE. After the facts of a particular problem
are obtained from the user, the system compares the facts of the problem to the
facts in the EXAMPLEs, and tries to find which is the ‘nearest case’.

When no further rules can be found to assist in determining the value for a fact,
the system will look to see if the fact is the subject of an example set. Example-
based reasoning is therefore only used ‘when the rules run out’ (to use one well-
known formulation).

This type of reasoning is most usefully used when there are a set of cases (or
other types of examples) which do not seem to conform to any obviously
discernible rule, but have various factors which recur from case to case (although
with different values), and where no single case provides any binding authority.

Case-based (Example-based) Reasoning using DataLex

51

7.3 Knowledge representation – EXAMPLEs
A set of cases is represented as a set of EXAMPLEs, where an EXAMPLE is a
particular type of rule declaration.

An EXAMPLE commences with the keyword EXAMPLE, followed by the name of
the EXAMPLE and the keyword PROVIDES. The first EXAMPLE in a set would
normally be declared to be a GOAL, but there would normally be little point in
declaring other EXAMPLEs to be GOALs.

The content of an EXAMPLE is normally an assignment (an expression which uses
the ONLY IF keyword), such as:
EXAMPLE Armory v Delamirie [1722] EWHC KB J94 PROVIDES

the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND [etc]

Each EXAMPLE in the set must have the same conclusion (the fact preceding
ONLY IF), or its negation. In the ‘finder's cases’ example above and below, the
common conclusion is the fact ‘the finder wins’ (or its negative form ‘the finder
does not win’). The keywords ONLY IF therefore function in a rather different
way in EXAMPLEs than in RULEs. An EXAMPLE could be considered as meaning
something like ‘An EXAMPLE where the finder wins, Armory v Delamirie, IS the
finder was not the occupier of the premises AND the chattel was not attached
AND [etc]’,

7.3.1 Automatic facts and example names

It is important that each EXAMPLE be named sensibly. In most instances, the
name of a case will be the name of an EXAMPLE (eg Armory v Delamirie [1722]
EWHC KB J94).

This name is used to construct three automatic facts of the form:

the situation is similar to example-name;
the situation is on all fours with example-name; and
example-name can be distinguished

These automatic facts are used by PANNDA to generate reports.

7.3.2 Formal syntax for an EXAMPLE

The syntax for defining examples which form part of an example set is a
restricted version of that used for rules:

 [GOAL] EXAMPLE [RULE] name PROVIDES
 [IF expression THEN] assignment

http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html
http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html
http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html

Case-based (Example-based) Reasoning using DataLex

52

The expression component of either the IF guard or the assignment itself, should
consist of a number of relative expressions separated by an AND operator. Each
relative expression (normally just a fact descriptor) should represent one
significant facet of the example.

The OR connector should not be used – if you really have to, use AND/OR instead.

The IF-THEN form should only be used where the fact about which the example
relates is non-boolean.

7.4 An example of a case representation by EXAMPLEs
The following is the knowledge representation for one case on the finding of
chattels.

EXAMPLE Armory v Delamirie [1722] EWHC KB J94 PROVIDES
 the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was not the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the parties
AND
 the chattel was not hidden AND
 there was not an attempt to find the true owner of the chattel
AND
 there was prior knowledge of the existence of the chattel

7.5 Reports generated by DataLex EXAMPLE reasoning
An example of a simple Report generated by the FINDER KB follows.

Mr Sweep wins because the situation is similar to Hannah v Peel
[1945] KB 509 and South Staffordshire Water Co v Sharman [1896] 2
QB 44 can be distinguished.
The situation is similar to Hannah v Peel [1945] KB 509 because: Mr
Sweep was not the occupier of the premises; Mr Lud was the owner of
the real estate; and there was not a bailment of the chattel.
South Staffordshire Water Co v Sharman [1896] 2 QB 44 can be
distinguished because there was not a master-servant relationship
between the parties.

7.6 Principles behind the case-based inferencing component
The underlying mechanism used to handle analogous reasoning is based on Alan
Tyree’s PANNDA (Precedent Analysis by Nearest Neighbour Discriminant
Analysis) algorithm. The theory behind PANNDA is described in A Tyree Expert
Systems in Law, Prentice-Hall, 1990. For further details of this approach see

http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html
http://www.austlii.edu.au/cgi-bin/LawCite?cit=%5b1945%5d%20KB%20509
http://www.austlii.edu.au/cgi-bin/LawCite?cit=%5b1896%5d%202%20QB%2044
http://www.austlii.edu.au/cgi-bin/LawCite?cit=%5b1896%5d%202%20QB%2044
http://www.austlii.edu.au/cgi-bin/LawCite?cit=%5b1945%5d%20KB%20509
http://www.austlii.edu.au/cgi-bin/LawCite?cit=%5b1896%5d%202%20QB%2044

Case-based (Example-based) Reasoning using DataLex

53

articles co-authored by Alan Tyree, and references to PANNDA and ‘the Finders’
cases’, in ‘The Datalex Project: History and Bibliography’ cited in Chapter 1. A
key aspect of PANNDA is that each matching fact is weighted on the basis of how
poorly it divides the example set, as measured by its inverse variance.

7.6.1 PANNDA

When the system is about to attempt to determine a value for a fact using an
example set, it first finds all examples which relate to it (that is, all examples
where the fact appears as the target of an assignment). It then determines (or
asks the user for) a value for all facts used in the examples. Finally, it compares
each example with the situation described by these fact values and finds the
nearest and furthest example. The furthest example is the one with the closest
facts but giving a different result to the nearest one.

The target fact is set to the same value as the nearest example. The similar or all-
fours fact for the nearest example is set to true. If the example is not on all fours,
the distinguished fact is also set for the furthest case. All of these facts (including
the target fact itself) receive sensible explanatory associations (for
how/reporting). Not all possible supporting facts are used for explanations.
Rather, only significant ones are reported (significant facts are those which tend
to, in themselves, divide the example set or in this instance have unusual values).

7.6.2 PANNDA’s DataLex implementation

The main difference between earlier versions of PANNDA and this one is the use
of the quasi-natural language knowledge representation.

The original PANNDA approach has also been extended in several minor
respects:

• The original PANNDA algorithm dealt only in boolean facts and outcomes.
There has never really been any good reason why the outcomes had to be
boolean (they are not used in determining which case to follow or
distinguish). Accordingly, this restriction has been dropped in the DataLex
implementation.

• DataLex also supports non-boolean facts. The variance for each of these is
calculated in the context of the present fact value. Accordingly, care
should be taken with use of equality operators. These should only be used
where the fact can only take one of a discrete number of values.

• It is not necessary that each example contains all of the facts used in
other examples. This feature can be used to generalise the effect of an

Case-based (Example-based) Reasoning using DataLex

54

example. The missing facts become, in effect, wild. Such examples, are, of
course, much easier to match. Again, caution is called for.

7.7 Steps in developing an EXAMPLE set
1. Identify a fact which cannot be determined in any obvious rule-based way,

but for which there are a set of cases or other examples which give a value
for that fact as their conclusion. Treat that fact as the conclusion fact of the
example set.

2. For each case, identify all the aspects of the case which appear to have some
bearing on the outcome of the case (ie the value of the conclusion fact). This
is where legal expertise is involved. Define each of these aspects as a
DataLex fact.

3. Analyse all of the cases to establish (if possible) the value of each of the facts
identified for any of the cases.

4. Represent each case as an EXAMPLE, with values for as many of the facts as
are known for that case. It does not matter that values for some facts are not
known.

7.7.1 RULEs, EXAMPLEs and DOCUMENTS interact

The values of facts used in EXAMPLEs (eg ‘the finder was not the occupier of the
premises’, as used in the example below), will be determined (in the first
instance) by backward chaining to determine if there is a RULE with that fact as
conclusion. Where a RULE uses a fact, backward chaining will invoke an
EXAMPLE with that conclusion once all RULEs have been exhausted. The same
applies where a fact is used in a DOCUMENT rule.

If a fact which is evaluated by an example set is intended to be a GOAL, it may be
necessary to create a rule along the following lines.

GOAL RULE Determine whether the finder wins PROVIDES
 DETERMINE the finder wins

7.7.2 Use of hypertext links with EXAMPLE rules

Hypertext links to sources can be used with EXAMPLE rules as with any other
rules (as detailed in Chapter 5):

• Automatic links will be made to any properly described Australian
legislation;

• Explicit links may be made from any other text using the LINK …. TO ….
keywords;

Case-based (Example-based) Reasoning using DataLex

55

• Embedded searches may be linked to any terms using the LINK …. TO ….
keywords, such as to terms in keywords which have been interpreted by
case law, like ‘bailment’ or ‘occupier’ (as in the example below).

• Automatic links to properly cited cases, as discussed below.

With EXAMPLE rules based on decisions in particular cases, it is particularly
important that a full title and citation for the decision be included in the title of
the EXAMPLE. This will then result in the automatic creation of a hypertext link to
either (i) the text of the decision, if the decision is included in AustLII or another
collaborating LII (eg NZLII, BAILII, HKLII, PacLII, SAFLII, CanLII), or (ii) the
LawCite citator, if the decision has a citation table there. The LawCite record for a
decision can also be accessed from that decision.

Automatic links to cases means, as in the example Report given in 7.5 above, that
the user can go to the cases cited in the Report, in order to assess whether they
agree with the suggestions for following and distinguishing particular cases given
in the Report. In making such a decision they can inspect not only the text of the
suggested cases, but also the LawCite record for each of the suggested cases in
order to determine whether there are subsequent cases that have a bearing on
the suggested cases (and may have been decided after the rule-base was
written). For discussion of the value of such facilities, see the article ‘Utilising AI
in the Legal Assistance Sector – Testing a Role for Legal Information Institutes’
cited in Chapter 1.

Furthermore, links to these cases are available to provide assistance when the
user is answering questions relevant to a case. In the Finder KB example, when
the user is asked about the finder ‘Was he the occupier of the premises ?’, and
responds ‘Why?’, the system replies ‘This will help determine whether or not the
situation is similar to Armory v Delamirie [1722] EWHC KB J94.’, with a link to the
LawCite citator entry.

http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html

Case-based (Example-based) Reasoning using DataLex

56

7.7.3 Example – the ‘finder’s cases’

The Finder KB can be accessed from the DataLex Communities page, or directly
to its location at <http://austlii.community/wiki/DataLex/FinderKB>. Note these
aspects:

• Each EXAMPLE rule includes in its name a full citation to the case on
which it is based.

• The ‘trespasser rule’ RULE is evaluated before the EXAMLE rules (it should
include authority for the proposition it states, but is incomplete).

PERSON the finder
PERSON the non-finder

GOAL RULE the finder wins PROVIDES
DETERMINE the finder wins

RULE trespasser rule PROVIDES
IF the finder is a trespasser THEN the finder does not win

EXAMPLE Armory v Delamirie [1722] EWHC KB J94 PROVIDES
 the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was not the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the parties
AND
 the chattel was not hidden AND
 there was not an attempt to find the true owner of the chattel
AND
 there was prior knowledge of the existence of the chattel

EXAMPLE Bridges v Hawkesworth (1851) 21 LJQB 75 PROVIDES
 the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the parties
AND
 the chattel was not hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Elwes v Brigg Gas (1886) 33 Ch D 562 PROVIDES
 the finder does not win ONLY IF
 the finder was the occupier of the premises AND
 the chattel was attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was not a bailment of the chattel AND

http://austlii.community/wiki/DataLex/FinderKB

Case-based (Example-based) Reasoning using DataLex

57

 there was a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the parties
AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Hannah v Peel [1945] KB 509 PROVIDES
 the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the parties
AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Corporation of London v Yorkwin [1963] 1 WLR 982 PROVIDES
 the finder does not win ONLY IF
 the finder was the occupier of the premises AND
 the chattel was attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was a bailment of the chattel AND
 there was a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the parties
AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Moffatt v Kazana [1969] 2 QB 152 PROVIDES
 the finder does not win ONLY IF
 the finder was the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was not the owner of the real estate AND
 the non-finder was the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the parties
AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was prior knowledge of the existence of the chattel

EXAMPLE South Staffordshire Water Co v Sharman [1896] 2 QB 44
PROVIDES
 the finder does not win ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was a master-servant relationship between the parties AND

Case-based (Example-based) Reasoning using DataLex

58

 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Yorkwin v Appleyard [1963] 1 WLR 982 PROVIDES
 the finder does not win ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was attached AND
 the non-finder was not the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was a master-servant relationship between the parties AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

DataLex User Interface Manual

59

8 DataLex User Interface Manual

8.1 Relationship to the previous chapters
Most user interface features are affected by choices by the developer in how the
code is written. The following extract from a session using the ElectKB
application on Australian electoral law will be used throughout this chapter to
illustrate aspects of the interface.

8.2 Starting a session
A session is usually started by the user going to the rule-base, and selecting ‘Run
consultation’ from above the code text. It is possible to create a link to directly
invoke the session, but this has the disadvantage (in the normal case) that the
user does not see the code, including any reservations or caveats that the author
may have expressed about it.

DataLex User Interface Manual

60

8.3 Choice of goals
Except in a consultation that has only one goal, it is necessary for the user to
select which goal will be evaluated, by selecting the appropriate numbered grey
button for the desired goal. A number can be entered instead.

8.4 Answering questions
Most questions asked by DataLex require a yes/no/uncertain response. These
can be issued by clicking the relevant button (at the bottom of the screen) or by
typing the response into the text field.

DataLex User Interface Manual

61

8.4.1 Buttons and numbers

Where a question can be answered by selecting a numbered button, it can also
be answered by typing the number and pressing enter.

8.4.2 Why? – Providing reasons for questions

The Why? command (at the bottom of the screen) can be given to any question
asked when a RULE or EXAMPLE (but not a DOCUMENT) is being evaluated.

In the current user interface, the Why command can be re-issued, in order to
show the next fact on the explanation stack (ie a broader reason why the current
question is being asked).

8.4.3 Hypothetical answers (‘What if?’)

The ‘What if?’ button (at the bottom of the screen) can be selected in response to
any question, in order to test what conclusions or other responses will be
generated if the given answer is correct. ‘What if?’ must be de-selected in order
for the session to continue.

8.4.4 Uncertain answers

If ‘Uncertain’ (at the bottom of the screen) is selected in response to any
question, the dialogue may continue if a value for that fact is not essential to a
conclusion being reached. If ‘Uncertain’ is sufficient to require a particular
conclusion to be reached, a Report will be generated to that effect.

8.5 Showing facts (What?)
All facts known are shown automatically, either as user-provided facts
(numbered green buttons) or as inferred facts (numbered blue buttons).

8.6 Forgetting facts (Forget)
Selecting a green numbered button will cause that fact to be forgotten, and the
consultation to go back to that point in the dialogue.

DataLex User Interface Manual

62

8.6.1 Forgetting all facts

‘Forget All’ appears at the top right of the list of known facts, and can be selected
in order to forget all facts and re-start the session. Typing ‘forget all’ in response
to any question will also cause all facts to be forgotten and the session to re-
start. Also, at the conclusion of the current session, the user is asked if (s)he
wishes to forget all current facts. The session can also be restarted from verbose
mode, by selection of the ‘Restart consultation’ link.

8.7 Obtaining explanations for conclusions (How?)
Selecting a numbered blue conclusion button will result in an explanation for that
conclusion being displayed in a pop-up.

8.8 Reports
At the conclusion of the session a Report is generated, setting out all reasoning
which is essential to conclusions which have been reached. Some conclusions
reached will not be displayed in the Report, because they were not essential to
the final conclusions Reports contain such hypertext links as are automatically
provided or explicitly linked.

Reports can be downloaded (as RTF, PDF, HTML or TXT), printed, or displayed in
a full window.

DataLex User Interface Manual

63

8.8.1 Documents generated

Where a document is generated, a Report is not also generated, but conclusions
and explanations for them may be viewed (see above).

8.9 Links to sources
Where links are provided, either automatically or explicitly, to sections of Acts,
cases, and other relevant sources of rules, then these links will appear in
questions, conclusions, explanations (Why? and How?), Related Materials and
Reports.

8.9.1 Returning to the dialogue

Selecting a hypertext link will cause the linked content to appear (i) in the whole
window of the session, or (ii) alternatively, only in the right-hand panel.

To return to the dialogue either use the back button in situation (i), or the cancel
(X) button at the top right of the right-hand panel in situation (ii).

8.9.2 Related materials

The names of current rules being evaluated (and previous rules evaluated),
including any hypertext links to sources contained in those rule names, are

DataLex User Interface Manual

64

shown under ‘Related Materials’ on the bottom right, and may be selected for
display at any time.

8.10 Viewing sessions in verbose mode
If the gear wheel at the bottom right of the consultation interface is selected, the
user is given three options for different means of viewing details of the evaluation
of the rule-base as the session progresses.

8.10.1 Viewing the rule being evaluated

In default, the ‘Rule’ option is displayed, showing the rule(s) currently being
evaluated. Selecting ‘See more…’ under that rule, will display the next rule in the
rule-base.

8.10.2 Viewing the session in Verbose mode

Choosing ‘Verbose’ mode causes an explanation of why questions are asked, and
what it concludes from them, to be displayed. For example:

* DETERMINED VALUE FOR the sex of the nominee
* DETERMINED VALUE FOR the age of the nominee
* FORWARD-CHAINING FOR the age of the nominee
* BLOCKED Commonwealth Electoral Act 1918 - Section 163(1)(a)
* FIRING Acts Interpretation Act 1901 Schedule 1
* DETERMINED VALUE FOR the definition of "adult" under Schedule 1
 of the Acts Interpretation Act 1901 Schedule 1 is met
* FORWARD-CHAINING FOR the definition of "adult" under Schedule 1
 of the Acts Interpretation Act 1901 Schedule 1 is met
* FIRING Acts Interpretation Act 1901 Schedule 1
* DETERMINED VALUE FOR the nominee is an adult
* DETERMINED VALUE FOR section 163(1)(a) of the Commonwealth
 Electoral Act 1918 is satisfied

8.10.3 Saving the transcript of a session

Choosing ‘Transcript’ gives the user a choice of including in a transcript one or
more of ‘Conversations’, ‘Facts’, ‘Conclusions’ and ‘Report’, and also whether the
transcript should imitate the layout of the session, or just be in plain text. As yet,
the transcript cannot automatically be saved anywhere, and nor can previous
transcripts be uploaded in order to save time in entering a long set of facts for
testing purposes.

